Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qian Yang, Dong-Dong Lin and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.154$
Data-to-parameter ratio $=18.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[[diaquacalcium(II)]- μ-oxydiacetato-[tetraaquamanganese(II)]- μ-oxydiacetato] dihydrate]

In the title complex, $\left\{\left[\mathrm{CaMn}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$, the $\mathrm{Ca}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ ions are bridged by oxydiacetate (ODA) dianions to form zigzag polymeric chains. The $\mathrm{Ca}^{\mathrm{II}}$ ion is located at a twofold axis and is coordinated by two tridentate ODA and two water molecules with a distorted tetragonal antiprism coordination geometry. The $\mathrm{Mn}^{\mathrm{II}}$ ion is located at another twofold axis, and assumes a distorted octahedral coordination geometry formed by four water molecules and two carboxyl O atoms from monodentate ODA dianions also chelating to the neighboring $\mathrm{Ca}^{\mathrm{II}}$ atoms.

Comment

As a tridentate ligand, the oxydiacetate (ODA) dianion usually adopts two kinds of chelating conformations, meridional or facial, in metal complexes. To study the factors affecting the chelating conformation of ODA, a series of complexes incorporating ODA has been prepared and their crystal structures determined in our laboratory (Cao et al., 2004; Luo et al., 2004; Gaduo et al., 2005). We present here the crystal structure of the title mixed-metal $\left(\mathrm{Mn}^{\mathrm{II}}\right.$ and $\left.\mathrm{Ca}^{\mathrm{II}}\right)$ complex, (I), in which the ODA plays the roles of both a chelating and a bridging ligand.

(I)

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The asymmetric unit contains one $\mathrm{Ca}^{\mathrm{II}}$ ion and one $\mathrm{Mn}^{\mathrm{II}}$ ion, which are bridged by ODA to form a zigzag polymeric chain which propagates along the crystallographic a axis.

The $\mathrm{Ca}^{\text {II }}$ ion is located at a twofold axis of symmetry and assumes a distorted tetragonal antiprismatic coordination geometry, formed by two tridentate ODA moieties and two water molecules. The $\mathrm{Ca}-\mathrm{O}_{\mathrm{c}}$ ($\mathrm{c}=$ carboxyl) bond distances are much shorter than the $\mathrm{Ca}-\mathrm{O}_{\mathrm{e}}(\mathrm{e}=$ ether $)$ bond distance (Table 1). This distinction in $M-\mathrm{O}$ bond distances agrees with those found in the reported $\mathrm{Mn}^{\mathrm{II}}$ complexes of ODA (Grirrane et al., 2004; Luo et al., 2004).

The $\mathrm{Mn}^{\mathrm{II}}$ ion is located on another twofold axis and assumes a distorted octahedral coordination geometry, formed by four

Received 16 August 2005 Accepted 17 August 2005 Online 20 August 2005

Figure 1
A segment of the polymeric structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (vi) $\frac{1}{2}-x, \frac{1}{2}-y, z$; (vii) $\left.\frac{3}{2}-x, \frac{1}{2}-y, z\right]$.
water molecules and two carboxyl O atoms from the the ODA dianions also chelating with the neighboring $\mathrm{Ca}^{\mathrm{II}}$ ion.

The ODA meridionally chelates to the $\mathrm{Ca}^{\mathrm{II}}$ ion to form two chelating five-membered rings. Each ring displays an envelope conformation. The atoms located in the flap positions are outof the mean plane formed by the other four atoms by 0.433 (5) (O3) and 0.921 (6) $\AA(\mathrm{Ca})$, respectively.

The adjacent polymeric chains are linked together via O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between coordinated water molecules and carboxyl groups of ODA (Table 2). Ether atom O3 is not involved in the hydrogen-bonding network.

Experimental

A hot aqueous solution (10 ml) of $\mathrm{H}_{2} \mathrm{ODA}(1 \mathrm{mmol})$ neutralized by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (about 1 mmol) was mixed with an aqueous solution (10 ml) of $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $\mathrm{CaCl}_{2}(1 \mathrm{mmol})$. The solution was refluxed for 3 h and then filtered. Colorless single crystals of (I) were obtained from the filtrate after 3 d .

Crystal data

$\left[\mathrm{CaMn}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=503.29$
Orthorhombic, Pccn
$a=9.9572$ (18) \AA
$b=12.819$ (2) \AA
$c=15.061$ (3) \AA
$V=1922.4$ (6) \AA^{3}
$Z=4$
$D_{x}=1.739 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.678, T_{\text {max }}=0.736$
11775 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 3866 reflections
$\theta=3.0-25.0^{\circ}$
$\mu=1.04 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.40 \times 0.38 \times 0.30 \mathrm{~mm}$

2379 independent reflections
1341 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-12 \rightarrow 13$
$k=-17 \rightarrow 17$
$l=-20 \rightarrow 10$

Figure 2
The unit-cell packing digram for (I), showing the hydrogen bonding (dashed lines) between polymeric chains. H atoms have been omitted.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0832 P)^{2}\right. \\
& +3.6036 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.53 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.154$
$S=0.87$
2379 reflections

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn}-\mathrm{O} 5$	$2.181(3)$	$\mathrm{Ca}-\mathrm{O} 3$	$2.493(2)$
$\mathrm{Mn}-\mathrm{O} 7$	$2.177(3)$	$\mathrm{Ca}-\mathrm{O} 4$	$2.390(3)$
$\mathrm{Mn}-\mathrm{O} 8$	$2.207(3)$	$\mathrm{Ca}-\mathrm{O} 6$	$2.415(3)$
$\mathrm{Ca}-\mathrm{O} 1$	$2.425(3)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.87	1.98	2.826 (4)	163
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 5$	0.83	1.95	2.756 (4)	166
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {ii }}$	0.82	2.07	2.838 (4)	156
O6-H6B \cdots O1 $W^{\text {iii }}$	0.85	1.92	2.772 (4)	173
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1 W^{\text {ji }}$	0.88	1.97	2.751 (4)	148
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 2^{\text {iv }}$	0.97	1.84	2.797 (4)	169
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {v }}$	0.92	1.92	2.838 (4)	178
$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.83	2.29	2.825 (4)	122
$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.83	2.31	3.094 (4)	158

Symmetry codes: (i) $x-1, y, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iv)
$x-1,-y+\frac{1}{2}, z+\frac{1}{2} ;(\mathrm{v})-x+1,-y+1,-z+1 ;$ (vi) $-x+\frac{1}{2},-y+\frac{1}{2}, z$.
H atoms on water molecules were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and included in the final cycles of refinement as riding with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ applied.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia,

metal-organic papers

1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the Natural Science Foundation of China (No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Cao, L., Li, N. \& Xu, D.-J. (2004). Acta Cryst. E60, m1066-m1067.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gaduo, Su, J.-R. \& Xu, D.-J. (2005). Acta Cryst. E61, m950-m952.
Grirrane, A., Pastor, A., Alvarez, E., Mealli, C., Lenco, A., Rosa, P., Montilla, F. \& Galindo, A. (2004). Eur. J. Inorg. Chem. pp. 707-717.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Luo, Y., Xu, D.-J., Wu, J.-Y. \& Chiang, M. Y. (2004). J. Coord. Chem. 57, 11251130.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

